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Abstract--Critical constants of mass diffusion through a membrane were related to a critical time, t:, which 
designates the conversion between transient and steady-state conditions of the diffusion process. The 
critical time t,, is precisely defined and analytically derived. In their dimensionless form, these critical 
constants depend solely on the Sherwood number (St). Values of dimensionless critical constants were 
determined for the whole range of Sherwood numbers. The results are useful in cases where small amounts 
of diffuse:d mass must be detectable. E.g. : in production from hazardous materials, in the design and 
evaluation of diffusion experimental processes and devices. The effect of measurement errors on the 
determination of the critical constants is also analyzed. The main results show that the evaluation of the 
critical ccsnstants is obtained with minimum errors, when experiments are being performed under convective 
boundary conditions (S/t > 100). The results of this study are applicable to heat transfer problems as well. 

0 1998 Elsevier Science Ltd. All rights reserved. 

INTRODUCTION 

The present work introduces critical constants of a 
point which separates between the transient and 
steady-state stages of mass diffusion through per- 
meable thin wal1.s. Quantitative prediction of this criti- 
cal point is useful, especially in cases where minimum 
amount of the diffusant must be detected, like pro- 
tection from hazardous materials and scientific experi- 
ments. Moreover, the critical point provides the basis 
for a wide range of industrial and scientific appli- 
cations. The following examples illustrate the variety 
and extent of these applications. 

(d) Evaluation of polymers resistance to permeation 
may help assess their potential for use in chemical 
protection clothing applications [5]. 

(e) In Biology, medical polymeric membranes are 
used for transporting biological liquids [6]. Cal- 
culations of the critical point is necessary for designing 
and conducting experiments. 

(f) Water absorbed in insulation of electric cables 
reduces their service life, by forming water trees in the 
insulation, which eventually break it [7]. Diffusion is 
the control mechanism of water penetration through 
these polymers. 

(a) Stored food in plastic packaging may suffer 
damage due to penetration of small amounts of 
foreign materials and impurities through plastic 
covers (refs. [l, 21). Evaluation of the required time 
for a critical mass of the undesired additives to pen- 
etrate the food, provides a control parameter for food 
storing. 

(g) Permeation tubes are simple devices which are 
being used to generate a known low concentration of 
a desired gas in a carrier gas, utilizing known constant 
mass permeation rate of the desired gas through poly- 
meric membranes. Permeation tubes are being used 
for example, in calibration of automobile exhaust gas 
and analyzers [8]. 

(b) The adsorption of low molecular weight pene- 
trants into solid polymers may change transport and 
mechanical properties of the polymer [3]. Relating 
the mechanical and mass transport properties to the 
critical diffusion parameters, enables prediction of 
these properties as a function of diffusion time. 

These applications are diffusion-controlled. Know- 
ing the critical point for each case provides design 
information regarding the time and the amount of 
diffusing substance either in transient or in steady- 
state conditions. 

(c) Transportation of hazardous liquids in polymer 
containers may be controlled by permeation test 
methods [4]. Storage life and transportation safety can 
be predicted and optimized by simple experiments 
determining the material geometry and diffusion 
properties of the container. 

The present analysis may also be used in designing 
and conducting diffusion based experiments by 
evaluating the critical point and its related critical 
constants prior to the beginning of the experi- 
mental and then refitting the critical point during the 
experiment. 

THEORY 

t Author to whom correspondence should be addressed. The simplest case, which accounts for the above 
E-mail : asagiv@netvision.net.il. applications, is the diffusion of a fluid through a plain 
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NOMENCLATURE 

c//co 
maximum diffusant mass 
concentration that a membrane can 
adsorb 
diffusant concentration within a 
membrane 
diffusion coefficient 

A4 
&f 
Sh 
t 
I’ 

tb 

convective mass transfer coefficient 
mL/ms, represents a closeness extent of 
m, to mL (Fig. 1) 
membrane thickness 

m’lm0 
total mass per unit area which exits a 
membrane to the ambient 
maximum diffused mass per unit area 
that a membrane can adsorb 

mYm0 
critical diffused mass at time t: 

mLlm0 

mass per unit area at t’, on the 
asymptotic line of m’(t’) 
mllmo 
total mass per unit area exits a 
membrane at ti 

Greek symbols 
A( ) difference between two values of () 

A, nth eigen-value defined in equation (6) 

X2 error measure of theoretical and 
experimental diffused mass. 

permeated mass in experiments 
rate mass permeated in experiments 
h,L/D, Sherwood number 
t/D/L2 
diffusion time 
minimum detectable (breakthrough) 
time of a diffused mass 
t;D/L= 
intercept time of the diffused mass 
asymptotic line 
t;D/L’ 
start time of a steady-state flux 
X/L 
coordinate, normal to a membrane 
plane. Starts at the wet side of the 
membrane (X’ = 0) and ends at the 
ambient side (X’ = L). 

sheet. It is a problem of heat or mass transfer through 
a membrane of thickness, L. The wet side of the mem- 
brane is in contact with the diffusant, while the other 
side is in contact with the ambient. The governing 
equation of this case is a one-dimensional diffusion 
equation (in its dimensionless form) : 

ac a2c _=_ 
at 8x2 

with the initial condition 

c=o, X>O, t=o. (2) 

The boundary conditions at the wet side of the mem- 
brane 

C=l, X=0, t>o. (3) 

The mass flux across the other surface is transferred 
to the ambient by convection [9] 

ac -= 
ax -ShC, x= 1, t>o 

where Sh = h,L/D is the Sherwood number. 
Equations (3) and (4) are boundary conditions of 

the diffusion equation (1). Equation (4) appears in 
various forms. It is known as a linear mixture of a 
Dirichlet and Neumann boundary condition in the 
case of heat conduction in a thin rod [lo], Fourier and 
Newton laws in the heat transfer case [l 11, or Fick’s 

law [9] in the mass transfer case. Therefore, analysis 
results of equations (l)-(4) are equally applicable for 
both heat and mass transfer. In this article, without 
loss of generality, we shall consider the mass transfer 
case only. 

The Sherwood number, Sh in equation (4) rep- 
resents a velocity ratio of the diffused mass, i.e., con- 
vective velocity relative to mass velocity within the 
membrane. Alternatively, it represents the absorb- 
ability of the diffusant by the ambient relative to the 
membrane ability to supply the diffused mass. There- 
fore, the concentrations at X = 1 [equation (4)] and 
along the membrane thickness are Sh dependent. 
When Sh is close to zero, the surrounding inhibits 
mass transfer, and when Sh tends to infinity, the sur- 
rounding absorbs the transferred mass from the mem- 
brane as fast as it can supply due to the forced con- 
vection of the ambient fluid [16]. In equation (4) it is 
assumed that the concentration of the diffusant, 
within the ambient is negligible relative to the con- 
centration at the membrane surface. 

The solution of equation (1) with the conditions set 
in equations (2)-(4) provides the following con- 
centration function : 

where 1, is given implicitly by : 
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A,, cos 1, + Sh sin 1, = 0. (6) 

The total mass m(t), which exits the membrane to 
the ambient, is obtained by integration of the diffusion 
flux at the membrane surface over the diffusion time, 
t, using equations (4)(6) : 

m(t) = 1 - - &+25 
(1 --e-@)COSL, 

II=, &(A, - sin L, cos 1,) ’ 

(7) 

The first term on the right hand side of equation (7) 
is the mass which exits the membrane to the ambient, 
after time long enough to achieve steady-state 
conditions. 

When the second term is significant, it indicates that 
part of the diffused mass is still adsorbed inside the 
membrane, i.e., an existence of a transient time depen- 
dent stage, until a saturation level in the membrane is 
achieved. Therefore, for small vaues of t, as long as 
the contribution of the second term of equation (7) is 
significant, the flow out of the membrane is considered 
to be in the transient stage. 

Fig. 1. Typical diffused mass-time curve. Definitions of criti- 
cal values t,, m,, mL and t, at a start-time of a steady-state 

mass flux. 

CRITICAL CONSTANTS 

Diffusion based industrial applications and lab- 
oratory experiments need critical criteria to separate 
the transient-state from the steady-state stages. Other 
critical constants such as minimum allowable (or 
detectable) diffused mass, are described in the intro- 
duction. As the diffusing mass, m(t), in equation (7) is 
a continuous function, it is difficult to determine a 
reference point in this function for the above critical 
constants. Howaver, there is a way to define precisely 
such a reference point in the m(t) function [equation 

(711. 

co, the concentration C(1) --+ 0 [equation (4)]. This 
specia! case is discussed in ref. [14] which resulted in 
the same value of t, = l/6, as in equation (10) for 
Sh -+ 00. A graphical presentation oft, [equations (6) 
and (9)] for the whole range of Sh is shown in Fig. 2. 
This figure shows that there are three mass con- 
ductivity zones ; (i) An “isolative zone” in which the 
ambient inhibits mass transfer out of the membrane. 
It exists at Sh < 0.03, and t, z l/2, independent of Sh. 
(ii) At the other end, when Sh > 30, the boundary 
conditions accelerate mass transfer and t, FZ l/6, 
regardless of Sh values. This zone is defined as a “con- 
ductive zone”, meaning that the ambient allows con- 
vection of all diffusants that reach the boundary. (iii) 
The intermediate or “mixed zone”, at the range of 
0.03 < Sh < 30, is characterized by Sh dependent t,, 
as shown in equations (6) and (9). 

Critical time 
Equation (7) has the following asymptotic line : Critical mass m, 

Once t, is analytically determined, the respective 
mass m, is calculated by substituting t, values in equa- 
tion (7), i.e., m, = m(tJ. A plot of m, vs. Sh is shown 
in Fig. 3. In the isolative zone, m, zz 0.039 for Sh > 30, 
regardless of Sh values. In the mixed zone, 
0.03 < Sh < 30, m, is Sh-dependent according to 
equations (6) and (7) and has a maximum value of 
mcmax = 0.042 at Sh = 7.3. 

where t, is the intercept point of the asymptote line 
with the time axis (Fig. 1). 

The time t, is uniquely determined by equations (6) 
and (9). Therefore, it is convenient to relate other 
diffusion constants either to t, or m, = m(tJ [equation 
(7)], the critical diffused mass. 

The critical time t, depends only on the Sherwood 
number, Sh [equation (9)]. In the limit values of Sh, 
the t, range is derived from equations (6) and (9) : 

6 < t, < ;. (10) 

The extreme value, t, = l/6, is obtained at high 
values of Sh (S/I -+ co). As Sh + 0, t, = l/2. As Sh + 

TIME (t) 

Definition oft,, the start-time of a steady-state mass 

Pax 
As has already been mentioned, diffusion is a con- 

tinuous process and is an asymptotic function [equa- 
tion (7)]. In such problems arbitrary definition is 
needed to decide when a steady-state starts practically. 
For example, the entrance length of a flow in a duct is 
arbitrarily defined as a distance at which the centerline 
velocity is 0.98-0.99 of the fully developed value [12]. 
Similarly, the velocity field boundary layer thickness 
of a fluid along a flat plate, is arbitrarily defined as a 
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Fig. 2. Changes off, with Sherwood number, 5% (l/6 < t, < l/2). 
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Fig. 3. Critical mass m, = m(t,) as a function of Sh (0 < m, < 0.039 with m,,,, = 0.042 at Sh = 7.3) 

distance from the plate surface for which the velocity 
of the fluid reaches 0.99 of the free stream velocity 

1131. 
An equivalent definition of the start-time of a 

steady-state diffusion rate, is the time, t,, at which 

m(tJ -=K, K<1 
m(4) 

(11) 

The constant Kin equation (11) represents the close- 
ness extent of the total diffusion mass m(t) [equation 
(7)] to the asymptotic mass mL [equation (K)] at time 
t,. The constant K may be taken as 0.99, the same as 
in boundary layer problems, or other values (< l), 
which satisfy specific application needs. For example, 
Figs. 4 and 5 graphically show equation (11) for t, with 
K = 0.9 and equation (7) m, = m,(t,) vs. Sherwood 
number, Sh, respectively. Both the time t, and the 
mass m, have similar functions of Sh as t, and m, (Figs. 
2 and 3). These functions have the same three zones : 

isolative, convective and mixed zones. Steady-state 
start time t, (defined for K = 0.9 [equation (1 l)] range 
is 0.281 Q t, < 0.47, and the respective mass range 
m, = m(tJ is 0 < m, d 0.127, with msmax = 0.132 at 
Sh = 10 (Table 1). 

Table 1 shows the relationship between the constant 
t, and m, vs. t,, mcr m,/m, and t,/ts for three cases of 
Sherwood numbers. 

Non-monotonic behavior of the critical mass constants 
Boundary conditions, represented by the Sherwood 

number, Sh, affect critical masses m, and m, non- 
monotically, as shown in Figs. 3 and 5. Their peak 
values are within 6 < Sh < 15. A physical interpret- 
ation, based on the boundary condition equation (4), 
is suggested for this peak. 

The mass flux diffuses from a membrane is pro- 
portional to the concentration of the diffused mass at 
the membrane surface, C(l, t), and to the Sherwood 
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Table 1. Dimensionless constant values of mass diffusion 

Sh 

< 0.02 112 0 0.947 0 0.302 0.528 
1 20 116 0.039 0.281 0.127 0.308 0.593 

max (Sh = ) 0.042 (7.3) 0.132 (10) 0.365 (1.5) 0.652 (1.5) 

*t, is the time at which the steady-state starts. It is arbitrarily defined as the time in which m,(t,)/m(t,) = 0.9, where 
q(t) = Sh(t- tJ(1 +Sh) is the asymptotic line of the m(t) curve equation. If the definition of t, is different, then the last 
four columns of Table 1 must be fitted accordingly. 

1 

0.8 

ts 0.6 

0.4 

0.1 I I I I I I I 
0 0.001 0.01 0.1 1 10 loo loo0 

Sh 
Fig. 4. Start-time of the steady-state mass flux, t,, as a function of Sh for mL/m, = 0.9 (0.281 < ts < 0.947) 

0.15 I I I I I I I 

Sh 
Fig. 5. Diffused mass, m,(Sh) (=m(t,, Sh)) curve for m,/m, = 0.9 (0 < m, < 0.127, with mrmai = 0.132 at 

Sh = 11). 
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number, Sh, which represents the rate at which the 
ambient absorbs the diffused mass relative to the mass 
velocity within the membrane. At low Sh (< 6) the 
ambient inhibits absorption of the diffused mass (low 
changes of C(l, t)), which results in its accumulation 
at the membrane surface (C( 1, t) = O(1)). In this case, 
m(t) increases with S/z, including m(t,) and m(tJ [equa- 
tion (4)]. At high Sh (> IS), C(1, t) decreases with 
increasing Sh, since the ambient sucks the diffused 
mass as fast as it exits the membrane. As Sh + co, 
C(1, t) + 0, m, and m, reach finite values shown in 
Table 1. At a certain combination of c( 1, t) and Sh (at 
Sh = 3 for mcmax and Sh = 11 for m,,,,), the critical 
constants reach their maximum values. 

Illustrative example 
The following example shows the applicability of 

this study in designing and conducting experiments of 
diffusion-based products. 

Suppose that maximum protection from hazardous 
material leakage is required. For any value of S/z, say 
Sh > 20 (good ventilation), the following equations 
for the critical points, fc, m, and t,, m, can be derived 
from Table 1 : 

L2 , 0.281L2 
t:=y$; t,= D ; 

rni = O.O39m, ; rni = 0.127m0. (12) 

Equations (12) show that maximum protection is 
achieved where one selects a membrane as thick as 
possible and of material which minimizes m, and D. 
Given values of the actual diffusion parameters m, 
and D, critical times and masses, may be calculated 
by equations (12). 

Experimental determination of diffusion parameters : 
D, m, and Sh 

Diffusion experiments provide N data points of per- 
meated mass, M, or mass rate, ti, as a function of 
time, t. A fit procedure of equation (7) and its deriva- 
tive may be applied to the experimental data yielding 
the required set of diffusion parameters D, m, and Sh, 
which minimizes : 

x2 = X[M,-m(t,, D, m,, Sh)]’ ; 

x:=c[~;-riz(t,,D,~~~,Sh)]‘,i= 1,2...N 
(13) 

for permeated mass, x2, and permeated mass rate, 
x:. 

In the following numerical examples, actual values 
of the diffusion parameters, m,, D and Sh, are 
obtained. These examples demonstrate various 
aspects of the theoretical contribution to better under- 
standing of the meaning of experimental data. 

Example 1 : breakthrough time 
A fit procedure of time derivative of equation (7) 

was applied to experimental data of ref. [5]. The data 

is of a permeation resistance of flexed metallized low 
density polyethylene to dichloromethane (film A- 1 
flexed). Several points which were taken from this 
graph are presented in Fig. 6 as experimental data. 
The curve in Fig. 6 is the time derivative of equation 
(7) with D = 0.333 x lo-’ cm2 s-‘, nrO = 1.14 g cm-’ 
and Sh = 5. 

Reference [5] has defined a breakthrough time as 
the time at which a minimum permeation rate of 15.8 
pg cm2-min-’ was detected using Miran 80A Infrared 
Spectrometer. With the above values of D, m, and Sh, 
it is obtained, from Fig. 6, that the breakthrough time 
(defined in Fig. 2) is : 

fb = 0.1 1 t,. (14) 

Equation (14) provides an idea of the detectable 
breakthrough time of a diffusant through a 
membrane, in terms of characteristic constant of a 
permeation process, based on the detection capability 
of the experimental instrumentation. 

Example 2 : lag time (critical time, t,) 
Mass permeation data was reported by ref. [3] and 

is represented by full squares in Fig. 7. These data are 
of Toluene vapor, at 40 ppm concentration and at 
water activity of 86%, permeated through a two-sided 
PVDC coated oriented polypropylene film. The curve 
in Fig. 7 is calculated from equation (7) with 
m, = 0.0105 g cmm3, D = 7.06x lo-l2 cm2 SK’, and 
Sh = 16.6. Using these constants, the value of the 
calculated time is tl = 184 h, while its experimental 
value, derived by ref. [3], is 55 h. This difference sug- 
gests that the experimentally determined lag time was 
based on data measured in the transient rather than 
steady-state stage of the permeation process. Theor- 
etically, on the other hand, it is possible to calculate 
the asymptotic line of the permeation curve (Fig. 7) 
and thereby calculate the exact lag time, t:, which is 
the intercept point of the asymptotic line with the time 
axis. 

Example 3 : dljjfusion mechanism 
Reference [2] studied the diffusion through dry and 

preswelled polymer films. They concluded that pre- 
swelling increases diffusion rate, shortens the induc- 
tion time and leads to linear plots. The linearity of 
preswelled films from a simple diffusion process, while 
dry films exhibit nonlinearity due to their complex 
diffusion process. 

The present approach to the diffusion process can 
account for all of the ref. [2] observations in one 
diffusion mechanism, expressed quantitatively by 
equation (7). 

The theoretical approach of the diffusion mech- 
anism deals with the two sub-processes sim- 
ultaneously : adsorption of a part of the diffusant by 
the membrane, while the other part of it passes 
through the membrane out to the ambient (transient 
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TIME (t) 
Fig. 6. Ma.ss permeation rate with diffusion time. The full squares were extracted from ref. [5] (film A-l 
flexed). The curve was calculated from equation (7) with D = 0.333 x IO-’ cm2 s-‘, m, = 1.4 g crnm3 and 

Sh = 5. 

1735 

TIME(t) 

Fig. 7. Permeated mass time m(t) curve. A fit of equation (7) to ref. [3] data (full squares) with D = 7.06 
10~” cm’ SC’, m, = 0.0105 g cm-’ and Sh = 16.6. 

state). When the membrane reaches equilibrium, a 
steady-state permeation is reached (a linear curve). 

On this ground the two curves of ref. [2] of ethyl- 
laurate diffusion through preswelled polypropylene 
film (a) and dry film (b) could be united into one 
graph, since it is a one diffusion process, which starts 
with transient-state and ends with steady-state. Figure 
8 shows ref. [2] data points for dry and preswelled 
films, and the theoretical curve calculated from equa- 
tion (7), where the maximum percentage of ethyl- 
laurate in the PP films is m, = 67.7, the diffusion 
coefficient of the whole process is D = 2.66 x lo-l2 
cm2 SC’ and Sh = 0.59. The group of data on the right 
side of Fig. 8, is of preswelled PP film in ethyl-laurate 

for 24 days [2]. Since no record was reported on the 
diffused mass percentage during preswelling period of 
time, a constant amount of mass percentage 
(Am = 27.8) was added to each of the upper seven 
points in Fig. 8, in order to fit it to a single curve. 

Effect of measurement errors on diffusion parameters 
and critical constants 

Given a set of experimental data, M(t), its appro- 
priate diffusion parameters, D, m, and Sh, can be 
evaluated as previously discussed. The minimum num- 
ber of data required for first estimation of the diffusion 
parameters, is three points of M,, t, (i = 1,2,3). Each 
additional experimental point upgrades the parameter 
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TIME(t) 

Fig. 8. A fit of equation (7) (with D = 2.66 x lo-‘* cm’ SC’, n-z0 = 67.7 g cmm3 and Sh = 0.59) to the data 
of ref. [2] for dry and preswelled polypropylene films (lower and upper squares, respectively). 

Sh 
Fig. 9. Relative deviation of the critical time At:/t: variation with Sh, for ASh/Sh = AD/D = Am,/m, = 0.1. 

values. Final values of the parameters are obtained 
using all available data at the end of the experiments. 
These changes affect the critical constants according 
to the following equations derived from equations (7) 
and (9) : 

Each term in equations (15) is an absolute value of 
a relative deviation. The primes indicate dimensional 
variables. Plots of AtL/tL(Sh) and Ami/mL(Sh) are 
shown in Figs. 9 and 10, with absolute relative devi- 
ations ASh/Sh = AD/D = Amolmo = 0.1. In these 
figures, relative deviations of the critical constants are 
of the order of the parameter deviations. 

Minimum errors in evaluating the critical constants 
t: and m:, are achieved in highly convective boundary 
conditions (Sh > 100). 

Deviations in a start point of the steady-state mass 
flux, may be obtained from the following equations 
derived from equations (7), (8) and (11) 

Am’s Am, Am, At: At, AD 
YE+=; 7=-++. (16) 
m, s ta 

Similar to equations (1 S), each term in equations 
(16) represents an absolute value, and the primes indi- 
cate dimensional variables. Graphic presentation of 
equations (16) for K = 0.9 [equation (1 l)], is very close 
to Figs. 9 and 10. 

DISCUSSION 

Mass (or heat) transfer through a membrane begins 
with a transient-state, in which part of the diffused 
mass is being absorbed into the membrane, and 
another part permeates through the membrane out to 
the ambient. With time, the membrane reaches equi- 
librium and the mass flux reaches a steady-state. 

For such a process it is useful to define a critical 
point, which will serve as a reference point between 
the transient and steady-state stages. The required 
point is being uniquely defined as the intercept point 
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0.2 I 

Am’c 
m’c 

0.15 ,- 

Sh 
Fig. 10. Relative deviation of the dimensional critical mass Am:/mL vs. Sh for ASh/Sh = Atno/ 

m0 = AD/D = 0.1. 

of the asymptotic line of m(t) with the time axis (t,, m, 
(Fig. 1)). The critical point, t,, m, which related to the 
reference point t,, m,, is also defined in this study. The 
boundary conditions effect on the critical constants of 
diffusion, at the external side of the membrane, were 
also discussed in this work. 

Analytical function of t,(S) was derived from 
where it was found that l/6 < t, < l/2, as shown in 
Fig. 2. The total mass, m,, which exits the membrane 
up to time t, reveals that m, is a function of Sh with 
peak value of 0.0418 at Sh = 7.3. Figures 2 and 3 
clearly demonstrate the difference between the fol- 
lowing three types of boundary conditions : 

(1) Convective 13oundary Conditions (Sh > 20) : In 
this range, the critical constants are practically Sh- 
independent. The surroundings are able to absorb 
the diffused mass as fast as the membrane can 
transfer it. Alternatively, the mass concentration 
at the external surface of the membrane, C(l, t), 
tends to zero regardless of the Sh value. Therefore, 
the boundary conditions have a negligible effect 
on the critical constants. 

(2) Inhibitive Blaundary Conditions (Sh < 0.02) : In 
this range, the membrane is able to transfer the 
diffused mass faster than the environment is able 
to absorb it. Any amount of diffused mass, which 
is being transferred to the environment, will 
accumulate at the external surface of the mem- 
brane independently of the Sherwood number, 
which means a negligible effect of the boundary 
conditions on the critical constants. Therefore, 
this condition is also characterized by critical con- 
stants, which are independent of Sh. 

(3) Mixed Boundary Conditions (0.02 < Sh < 20) : 
The critical constants in this region are strongly 
Sh-dependent. Moreover, m, in Fig. 3 has a peak 
value in this range, although t, monotonically 
decreases with Sh, as seen in Fig. 2. The non- 
monotonic behavior of m, is due to the opposite 
effects of C( 1, t) and S/t [equation (4)]. 

Based on the exactly defined critical point, t,, m,, 
practical critical points such as start time and initial 
mass, t,, m,, of a steady-state mass flux were defined 
and related to t,, m,. Figures 4 and 5 depict graphs of 
t,, m,, similar to those of t,, m,. The start time of a 
steady-state mass flux, t,, changes with Sh more than 
three fold. This implies, for example, that in appli- 
cations of protecting people and products from con- 
taminants and hazardous materials, inhibitive bound- 
ary conditions are required in order to maximize t, 
and minimize m, (Figs. 4 and 5). 

A fit procedure of m(t) [equation (7)] to three exist- 
ing experimental data sets is carried out. Specific 
values of the diffusion parameters, D, m, and Sh, for 
each data set was obtained. Additional results of the 
fit procedure are : 

(1) Empirical detectable breakthrough time, tb, of a 
diffusant through a membrane is related to t,, 
t, = O(O.1 t,). This specific relationship provides a 
first guess of tb for diffusion based design of prod- 
ucts and experiments. 

(2) Empirical determination of t, may wrongly be 
based on transient rather than steady-state data, 
since it may take an unknown amount of time to 
achieve a steady-state mass flux. However, apply- 
ing equations (7) to the experimental data yields 
diffusion parameters by which t, is exactly cal- 
culated and therefore m,, t, and m, may be cal- 
culated accordingly from equation (9). 

Measurement errors cause deviations in the cal- 
culated diffusion parameters and critical constants. 
Relationships, which were developed between the 
deviations, show that minimum errors in evaluating 
the critical constants (Figs. 9 and 10) are achieved in 
convective boundary conditions (Sh > 100). A poss- 
ible explanation for this effect is that at high Sherwood 
numbers the exit mass flux is governed by the diffusion 
process through the membrane only, and changes in 
the boundary conditions have a negligible effect on 
the process critical constants. 
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